

Impact equation

$$I = P * A * T$$

- **Sustainability** requires making every decision with the future in mind.
- •It is our relationship with the world around us creating economic prosperity and social value while contributing to the protection of our planet.

Ways to bring in life-cycle thinking

PLAN WITH A SUSTAINABLE Future IN MIND

Source: The Natural Step

Dow's 2015 Sustainability Goals

Principles of Green Chemistry & Engineering

Dow's "Principles of Sustainable Chemistry & Engineering" Program

Dow Chemical Sustainability Footprint Tool[©]

23 questions compiled into 6 dimensions:

Base Case:

Project relative footprint (smaller is better):

David A. Russell & Dawn L. Shiang.

ACS Sustainable Chem. Eng., 2013, 1 (1), pp 2–7

http://pubs.acs.org/doi/abs/10.1021/sc300131e

Start with a flow diagram

The Dow dimension considers 8 aspects:

Project relative footprint (smaller is better):

13 Chims, No Drawings

Dow

Life cycle assessment concepts

Emissions and Waste

Energy and **Materials**

Cradle to Gate

Cradle to Grave

10/15/2013 15

Impact Assessment

*Such as:

- •Global Warming Potential (*climate change, carbon footprint*)
- Acidification Potential (acid rain)
- •Eutrophication Potential (water pollution, anoxia, dead zone)
- •Photochemical Oxidant Creation Potential (summer smog)

The LCA pyramid

Comparative Assertions

Information about our products

Internal decisions

Life cycle thinking & discussion

Complexity, time, cost, expertise

Balancing rigor & speed

What if we could make films with low-density core?

*not the actual product, but a good picture!

Quick LCA results for low-density cores

What if we used non-fossil filler for polyethylene films?

Quick LCA results for PE fillers

Example: Sugarcane-based polyethyelene

Conventional Route

Petroleum-based

Sugarcane-based

Advantages & trade-offs of cane PE

LCA results led to site-specific investigation of "high" metrics

Sustainable Chemistry Index

Raw

25

SCI defines "highly advantaged sales"

Innovative product examples

- Technology can affect impacts
- Drivers for more sustainable innovations:
 - Future vision
 - Individual awareness
 - Quantitative understanding for projects, products, businesses & the corporation

Details on innovation examples

Examples of renewables in LCA

Sources: The Dow Chemical Company; PlasticsEurope; http://www.plasticseurope.org/plastics-sustainability/eco-profiles.aspx

Virtually free of trans fat and containing the lowest saturated fat content of any vegetable oil, and half the saturated fat of olive oil, Omega-9 Canola and Sunflower Oils can be used in numerous applications, including deep frying, sautéing, baking and in salad dressings.

Sustainability Profile

- Zero Trans Fat
- High in heart-healthy monounsaturated fat
- Lowest saturated fat of typical cooking oils and half the saturated fat of olive oil
- Since 2005 Omega-9 Oils have eliminated nearly 700 million pounds of trans fat and 300 million pounds of saturated fat from North American foods
- Studies show people prefer the taste of foods fried in Omega-9 Canola Oil over common oils

 Dow AgroSciences

DOWTM POWERHOUSETM ROOF SHINGLES

Description

Building integrated photovoltaic (BIPV) design combines roofing protection and power generation in one product.

Sustainability Profile

- Aesthetically pleasing and neighborhoodfriendly, it's the best looking solar option available for asphalt rooftops
- Installed by a roofer along with standard asphalt roofing materials which eliminates additional steps and costs
- Interconnected system design allows for a single power connection
- Launched in October 2009, the POWERHOUSE™ Solar Shingle is now commercially available in select markets

TIME Magazine:
"50 Best
Inventions
of 2009"

"Best New Product"

2010

AWARD WINNER

GLOBE Foundation

"Environmental
Excellence
in Emerging Technology"

2012

AWARD WINNER

Gold Edison Award™

REVERSE OSMOSIS MEMBRANE TECHNOLOGY

Description

FILMTEC™ reverse osmosis membranes produce freshwater through desalination and recycling wastewater around the globe.

Sustainability Profile

- Helps make desalination more energyefficient and removes pollutants from wastewater
- Provide clean drinking water in waterstressed regions
- Decreases use of chemicals and GHG emissions
- Allows wastewater to be reused in industrial processes, agricultural and landscape irrigation, toilet flushing, gardening and ground water replenishment

Smart Solutions - Innovations for Tomorrow – Responsible Operations - Partners for Change

POLYMERIC FLAME RETARDANT

Description

Dow's next-generation flame retardant is safer for human health and the environment compared to existing insulation material alternatives, without sacrificing performance or cost.

Sustainability Profile

- High-molecular-weight polymeric flame retardant
- Effective level of flame retardancy that's nonpersistent, bioaccumulative or toxic
 - Specifically does not pose risk to marine environments
- Fire safety solution for EPS and XPS foams
- Enables insulation materials to meet increasing demands of global energy efficiency regulations
- Promotes global supply security and industry transition to a more sustainable flame retardant solutions

2012